

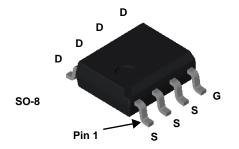
December 2007

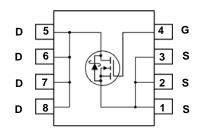
FDS8672S

N-Channel PowerTrench[®] SyncFETTM 30V, 18A, 4.8m Ω

Features

- Max $r_{DS(on)} = 4.8m\Omega$ at $V_{GS} = 10V$, $I_D = 18A$
- Max $r_{DS(on)} = 7.0 \text{m}\Omega$ at $V_{GS} = 4.5 \text{V}$, $I_D = 15 \text{A}$
- Includes SyncFET Schottky body diode
- High performance trench technology for extremely low r_{DS(on)} and fast switching
- High power and current handling capability
- 100% R_q (Gate Resistance) tested
- Termination is Lead-free and RoHS Compliant




General Description

The FDS8672S is designed to replace a single MOSFET and Schottky diode in synchronous DC/DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $r_{\rm DS(on)}$ and low gate charge. The FDS8672S includes a patented combination of a MOSFET monolithically integrated with a Schottky diode using Fairchild's monolithic SyncFET technology.

Application

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore low side switch
- Point of load low side switch

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Para	meter		Ratings	Units
V_{DS}	Drain to Source Voltage			30	V
V_{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous			18	۸
^I D	-Pulsed			80	A
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	216	mJ
Б	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	W
P_{D}	Power Dissipation	T _A = 25°C	(Note 1b)	1.0	VV
T _J , T _{STG}	Operating and Storage Junction Tempe	erature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Note 1)	25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	- C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8672S	FDS8672S	SO8	13"	12mm	2500 units

Electrical Characteristics $T_J = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 1 \text{mA}, V_{GS} = 0 \text{V}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 10mA, referenced to 25°C		33		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24V, V _{GS} = 0V			500	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1mA$	1.0	2.1	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 10mA, referenced to 25°C		-5		mV/°C
		$V_{GS} = 10V, I_D = 18A$		3.8	4.8	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 15A		5.3	7.0	mΩ
		$V_{GS} = 10V$, $I_D = 18A$, $T_J = 125$ °C		5.3	7.8	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 18A$		78		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 45V V 0V	2005	2670	pF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	985	1310	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	135	205	pF
R_g	Gate Resistance	f = 1MHz	0.6	2.0	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time				12	22	ns
t _r	Rise Time	$V_{DD} = 15V, I_D = 18$	$V_{DD} = 15V, I_D = 18A, V_{GS} = 10V, R_{GEN} = 6\Omega$		4	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, K _{GEN}	= 022		26	42	ns
t _f	Fall Time				3	10	ns
Q_g	Total Gate Charge	V _{GS} = 0V to 10V			29	41	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$	V _{DD} = 15V, I _D = 18A		15	21	nC
Q _{gs}	Gate to Source Charge		1D = 10H		5.5		nC
Q_{gd}	Gate to Drain "Miller" Charge				3.7		nC

www.DataSIDrain-Source Diode Characteristics

$V_{GS} = 0V, I_{S} = 1.8A$ 0.4 0.7 $V_{GS} = 0V, I_{S} = 1.8A$ 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	V	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 18A$		0.8	1.2	\/
$I_F = 18A$, di/dt = 300A/ μ s	V SD	Source to Drain blode Forward voltage	$V_{GS} = 0V, I_{S} = 1.8A$		0.4	0.7	V
	t _{rr}	Reverse Recovery Time	L = 19A di/dt = 200A/a		27	43	ns
1-11	Q _{rr}	Reverse Recovery Charge	T _F = 16A, α/αι = 300A/μS		31	50	nC

^{1.} R_{0.1A} is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0.1C} is guaranteed by design while R_{0.CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad.

^{2.} Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. Starting T_J = 25°C, L = 3mH, I_{AS} = 12A, V_{DD} = 30V, V_{GS} = 10V.

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

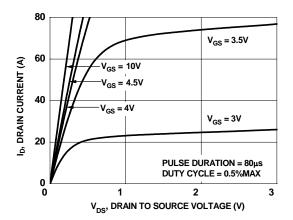


Figure 1. On-Region Characteristics

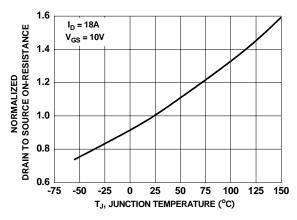


Figure 3. Normalized On-Resistance vs Junction Temperature

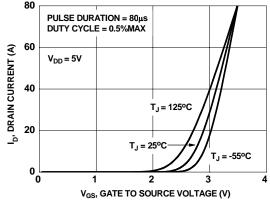


Figure 5. Transfer Characteristics

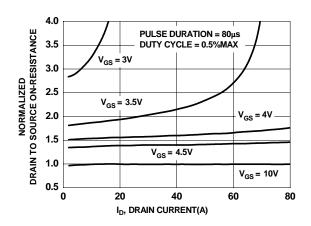


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

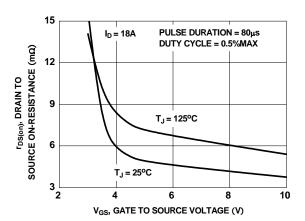


Figure 4. On-Resistance vs Gate to Source Voltage

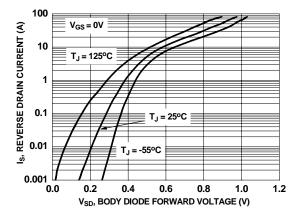


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

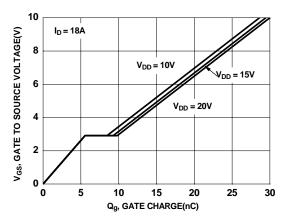


Figure 7. Gate Charge Characteristics

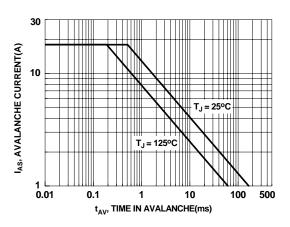


Figure 9. Unclamped Inductive Switching Capability

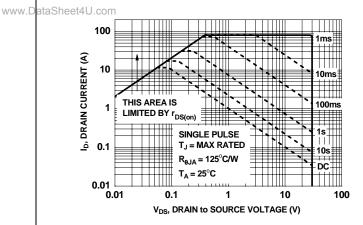


Figure 11. Forward Bias Safe Operating Area

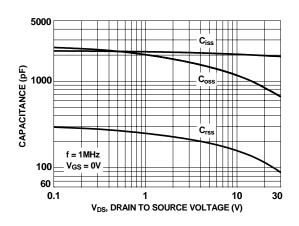


Figure 8. Capacitance vs Drain to Source Voltage

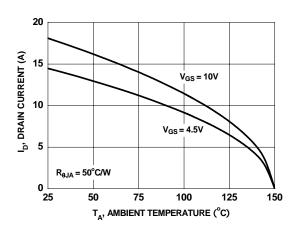


Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

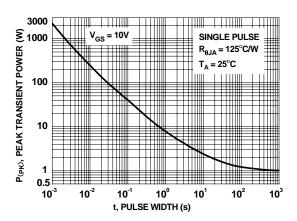


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

Figure 13. Transient Thermal Response Curve

www.DataSheet4U.com

Typical Characteristics T_J = 25°C unless otherwise noted

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverse recovery characteristic of the FDS8672S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

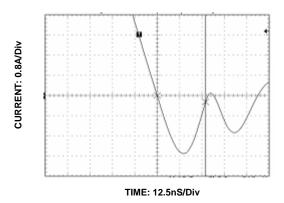


Figure 14. FDS8672S SyncFET Body Diode Reverse Recovery Characteristics

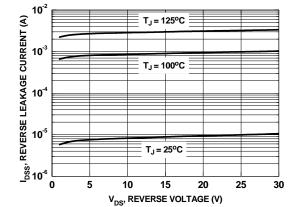


Figure 15. SyncFET Body Diode Reverse Leakage vs Drain to Source Voltage

www.DataSheet4U.com

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

PDP-SPM™ SvncFET™ $\mathsf{FRFET}^{\mathbb{B}}$ SYSTEM ®
GENERAL
The Power Franchise® Build it Now™ Power220® Power247® CorePLUS™ Global Power ResourceSM $CROSSVOLT^{TM}$ Green FPS™ POWEREDGE® p wer CTL™ Green FPS™ e-Series™ Power-SPM™ PowerTrench® Current Transfer Logic™ GTO™ TinyBoost™ EcoSPARK® i-Lo™ Programmable Active Droop™ TinyBuck™ EZSWITCH™ * IntelliMAX™ QFET® TinyLogic[®] QSTM ISOPLANAR™ TINYOPTO™ MegaBuck™ QT Optoelectronics™ TinyPower™ MICROCOUPLER™ Quiet Series™ TinyPWM™ fairchild[®] RapidConfigure™ MicroFET™ TinyWire™ MicroPak™ Fairchild Semiconductor® SMART START™ µSerDes™ SPM[®] FACT Quiet Series™ MillerDrive™ **UHC®** FACT[®] Motion-SPM™ STEALTH™ Ultra FRFET™ $\mathsf{FAST}^{\mathbb{B}}$ OPTOLOGIC® SuperFET™ UniFET™ OPTOPLANAR® FastvCore™ SuperSOT™-3 **VCXTM** FlashWriter® * SuperSOT™-6 SuperSOT™-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

www.[

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I32

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.